# LINEAR RELATIONSHIP BETWEEN MOLECULAR ROTATION AND BOND REFRACTION IN CARBOHYDRATES

Bo-Long Poh\*

School of Chemical Sciences, Universiti Sains Malaysia, Penang (Malaysia) (Received February 23rd, 1982; accepted for publication, March 8th, 1982)

### ABSTRACT

The molecular rotations ([M]<sub>D</sub>) of derivatives of  $\alpha$ -D-glucopyranose,  $\alpha$ -D-galactopyranose, and  $\alpha$ -D-xylopyranose having different substituents at the anomeric carbon atom are shown to be linearly related to the bond refractions  $\Sigma R_D$  in the form of the empirical equation [M]<sub>D</sub> =  $m\Sigma R_D$  + I, where m and I are constants.

#### INTRODUCTION

The search for a relationship between the optical rotation and the configuration of a compound has long occupied the attention of chemists. Currently, theoretical approaches<sup>1-4</sup> have had only limited success in the quantitative prediction of optical rotation, but empirical approaches<sup>5-12</sup> seem to be more promising in this aspect.

We have shown<sup>12</sup> that, with a different treatment of the term  $\Sigma R_D$ , the empirical equation  $I^{11}$ ,

$$[M]_{D} = m\Sigma R_{D} + I \tag{1}$$

(where  $[M]_D$  is the molecular rotation,  $\Sigma R_D$  is the sum of bond refractions, and m and I are constants for a given series of compounds; the subscript D denotes the sodium D-line), gives good correlations for several series of aliphatic and cyclic compounds having one chiral centre (1). Each series was formed by varying either the substituent  $X^{12}$  or the carbon chain-length  $n^{13}$ . Poorer plots were obtained when X and n were varied together<sup>13</sup>.

Since equation I is simple (the R<sub>D</sub> values for the individual bonds are known<sup>14</sup>) and has potential for predicting the molecular rotations of other compounds in the same series, it was of interest to extend its use to carbohydrates. Hitherto, there

<sup>\*</sup>This work was carried out at the Max-Planck-Institut für Experimentelle Medizin (Göttingen, West Germany) during the author's sabbatical leave.

198 B.-L. POH

has been no satisfactory quantitative treatment of the vast amount of literature data on the molecular rotations of carbohydrates. Derivatives of  $\alpha$ -D-glucopyranose (2-5),  $\alpha$ -D-galactopyranose (6 and 7), and  $\alpha$ -D-xylopyranose (8 and 9) having different substituents at the anomeric carbon atom were chosen for the first part of the investigation, in order to avoid dealing with a mixture of conformers. Compounds 2-9 are expected to exist practically in the  ${}^4C_1$  conformation only  ${}^{15.16}$ . For substituents that can form an asymmetric conformational unit (e.g., X = OMe), the orientation shown in 10a is favoured because of both the exo-anomeric effect and steric factors  ${}^{10}$ ; 10a-10c are Newman projections viewed from C-1 along the C-1-OMe bond axis. It is now reported that equation I can be applied to these carbohydrates.

3 
$$R = R^1 = OH$$
,  $R^2 = H$ ,  $R^3 = CH_2OH$ 

4 
$$R = R^1 = OBz$$
  $R^2 = H$ ,  $R^3 = CH_2OBz$ 

5 
$$R = R^1 = OCH_2Ph, R^2 = H, R^3 = CH_2OCH_2Ph$$

6 
$$R = R^2 = OAC$$
,  $R^1 = H$ ,  $R^3 = CH_2OAC$ 

7 
$$R = R^2 = CH$$
,  $R^1 = H$ ,  $R^3 = CH_2OH$ 

9 
$$R = R^1 = OH, R^2 = R^3 = H$$

#### METHOD AND RESULTS

For a monovalent substituent (e.g., X = Br), the term  $\Sigma R_D$  is equal to the bond refraction of the C-X bond. For substituents that are polyatomic and form asymmetric conformational units (X = YZ, where Y = N, O, or S), there are two cases to be considered. When Z contains an acetyl group attached to Y (e.g.,  $X = OCOCH_3$ ), the term  $\Sigma R_n$  is equal to the sum of the bond refraction of the C-Y bond and the projection of the bond refraction of the Y-Z bond on the C-1-Y bond axis. When Z does not contain an acetyl group attached to Y (e.g.,  $X = OCH_3$ ), the term  $\Sigma R_D$  is equal to the sum of the bond refraction of the C-Y bond and the projection of the bond refraction of the Y-Z bond on the C-1-C-2 bond axis. For the latter case, the conformer 10a was used for the calculations of  $\Sigma R_{D}$ . There are also two cases to be considered when Z contains a substituted phenyl ring. When the ring-substituent  $X_1$  is strongly electron-withdrawing (e.g.,  $NO_2$ , CN, and  $COCH_3$ ), its contribution to the bond refraction of the parent ring is the bond refraction of the C- $X_1$  bond (para position) or half of it (ortho or meta position; the  $C_{Ar}-X_1$  bond is at 60° to the Y-C<sub>Ar</sub> bond in these two positions; the subscript Ar connotes aryl). When X<sub>1</sub> is not strongly electron-withdrawing (e.g., OH, NH<sub>2</sub>, OR, and the halogen atoms), the contribution of X<sub>1</sub> to the bond refraction of the parent ring is obtained

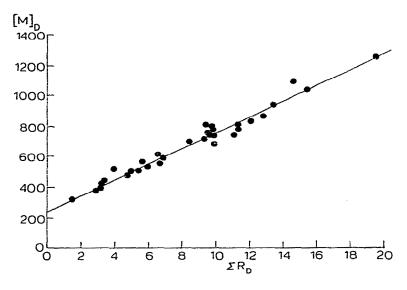



Fig. 1. Relationship between molecular rotation and bond refraction in α-D-glucopyranose tetraacetate derivatives 2.

TABLE I bond refractions  $(\Sigma R_D)^a$  for various substituents

| X                     | C-X               | X                                                                                    | C-Xb | X                                                  | C-Xb              |
|-----------------------|-------------------|--------------------------------------------------------------------------------------|------|----------------------------------------------------|-------------------|
| Н                     | 0¢                | OEt                                                                                  | 4.95 | OC <sub>6</sub> H <sub>4</sub> NO <sub>2</sub> (o) | 11.3              |
| F                     | 1.44              | OPr <sup>i</sup>                                                                     | 5.62 | $OC_6H_4NO_2(m)$                                   | 11.3              |
| Cl                    | 6.51              | OBu                                                                                  | 5.38 | $OC_6H_4NO_2(p)$                                   | 13.4              |
| Br                    | 9.39              | OHex                                                                                 | 5.41 | $OC_6H_4Me(o)$                                     | 9.87              |
| I                     | 14.6              | OC <sub>6</sub> H <sub>11</sub>                                                      | 5.92 | $OC_6H_4Me(m)$                                     | 9.50              |
| OAc                   | 3.14              | OCH <sub>2</sub> CHCH <sub>2</sub>                                                   | 5.75 | $OC_6H_4Me(p)$                                     | 9.32              |
| OCOCH <sub>2</sub> F  | 2.91              | OPh                                                                                  | 9,23 | $OC_6H_4COPh(p)$                                   | 9.55              |
| OCOCH <sub>2</sub> Cl | 3.20              | $OC_6H_4Cl(m)$                                                                       | 9.94 | SMe                                                | 10.9              |
| OCOCH <sub>2</sub> Br | 3.36              | $OC_6H_4Cl(p)$                                                                       | 9.54 | SEt                                                | 11.1              |
| OBz                   | 3.91              | $OC_6H_4Br(p)$                                                                       | 9.72 | $SC_6H_{11}$                                       | 12.1              |
| $OCOC_6H_4NO_2(p)$    | 3.96              | $OC_6H_4OH(p)$                                                                       | 9.26 | $SBu^t$                                            | 8,40 <sup>d</sup> |
| SAc                   | 6.62              | $OC_6H_4NH_2(p)$                                                                     | 9.31 | SPh                                                | 15.4              |
| NHAc                  | 3.73              | $OC_6H_4OMe(o)$                                                                      | 9.79 | $SC_6H_4NO_2(p)$                                   | 19.5              |
| ONO <sub>2</sub>      | 6.86 <sup>b</sup> | $OC_6H_4COMe(p)$                                                                     | 13.7 | SCH <sub>2</sub> Ph                                | 12.8              |
| OH                    | 3.20%             | O(CH <sub>2</sub> ) <sub>2</sub> NHCO(CH <sub>2</sub> ) <sub>8</sub> CH <sub>3</sub> | 5.40 | S(CH <sub>2</sub> ) <sub>6</sub> NH <sub>2</sub>   | 11.6              |
| OMe                   | 4.766             | O(CH <sub>2</sub> ) <sub>3</sub> NHCO(CH <sub>2</sub> ) <sub>8</sub> CH <sub>3</sub> | 5.41 | ,                                                  |                   |

<sup>&</sup>lt;sup>a</sup>Calculated from individual bond refractions given in ref. 14. Angle CSC = 105° (*Handbook of Chemistry and Physics*, 4th edn., Chemical Rubber Co., Cleveland, Ohio, 1968, p. F-157). All other angles are given in the previous work<sup>12</sup>. <sup>b</sup>Calculated for conformer 10a. <sup>c</sup>See text. <sup>d</sup>Calculated for the eclipsed conformer (see text).

200 B.-L. POH

TABLE II

MOLECULAR ROTATIONS OF COMPOUNDS 2-9

| X                                  | [M] <sub>D</sub> | Ref. | X                                                                                    | $[M]_{D}$ | Ref. | X                                                | $[M]_{D}$ | Ref. |
|------------------------------------|------------------|------|--------------------------------------------------------------------------------------|-----------|------|--------------------------------------------------|-----------|------|
| Conspounds 2ª                      |                  |      |                                                                                      |           |      |                                                  |           |      |
| F                                  | 315              | 17   | OAc                                                                                  | 397       | 21   | SPh                                              | 1030      | 25   |
| Cl                                 | 609              | 17   | OBz                                                                                  | 513       | 21   | $OC_6H_4Br(p)$                                   | 803       | 19   |
| Br                                 | 813              | 17   | OCOCH₂F                                                                              | 378       | 17   | $OC_6H_4Cl(m)$                                   | 737       | 19   |
| I                                  | 1087             | 17   | OCOCH <sub>2</sub> CI                                                                | 428       | 17   | $OC_6H_4Cl(p)$                                   | 760       | 19   |
|                                    |                  |      |                                                                                      |           |      | $OC_6H_4NO_2(o)$                                 | 783       | 19   |
| OMe                                | 471              | 18   | OCOCH <sub>2</sub> Br                                                                | 445       | 17   | $OC_6H_4NO_2(m)$                                 | 811       | 19   |
| OPh                                | 715              | 19   | $SC_6H_4NO_2(p)$                                                                     | 1242      | 22   | $OC_6H_4NO_2(p)$                                 | 938       | 19   |
| $ONO_2$                            | 586              | 20   | SAc                                                                                  | 548       | 23   | $OC_6H_4Me(o)$                                   | 679       | 19   |
| OHex                               | 505              | 21   | SEt                                                                                  | 745       | 24   | $OC_6H_4Me(p)$                                   | 718       | 19   |
| $OC_6H_{11}$                       | 525              | 21   | SC <sub>6</sub> H <sub>1</sub> i                                                     | 834       | 24   | $OC_6H_4COPh(p)$                                 | 749       | 19   |
| OPr <sup>i</sup>                   | 566              | 21   | SBu <sup>t</sup>                                                                     | 697       | 24   | $OC_6H_4OMe(o)$                                  | 774       | 19   |
| OEt                                | 497              | 21   | SCH <sub>2</sub> Ph                                                                  | 863       | 24   |                                                  |           |      |
| Compounds 3b                       |                  |      |                                                                                      |           |      |                                                  |           |      |
| OMe                                | 309              | 26   | SMe                                                                                  | 386       | 24   | $OC_6H_4NO_2(o)$                                 | 620       | 19   |
| ОН                                 | 203              | 27   | OPh                                                                                  | 463       | 19   | $OC_6H_4NO_2(m)$                                 | 569       | 19   |
| $S(CH_2)_6NH_2$                    | 646              | 28   | O(CH <sub>2</sub> ) <sub>2</sub> NHCO(CH <sub>2</sub> ) <sub>8</sub> CH <sub>3</sub> | 256       | 30   | $OC_6H_4NO_2(p)$                                 | 650       | 19   |
| OEt                                | 316              | 21   | O(CH <sub>2</sub> ) <sub>3</sub> NHCO(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> | 274       | 30   | $OC_6H_4Me(o)$                                   | 421       | 19   |
| $OC_6H_{11}$                       | 349              | 21   | $OC_6H_4NH_2(p)$                                                                     | 526°      |      | $OC_6H_4Me(p)$                                   | 480       | 19   |
| OCH <sub>2</sub> CHCH <sub>2</sub> |                  | 29   | $OC_6H_4OH(p)$                                                                       | 486       | 19   | OBu                                              | 320       | 31   |
| Н                                  | 70               | 25   | $OC_6H_4OMe(o)$                                                                      | 447       | 19   | F                                                | 176       | 32   |
| Compounds 4a                       |                  |      |                                                                                      |           |      |                                                  |           |      |
| F                                  | 658ª             | 33   | Br                                                                                   | 811       | 33   | H                                                | 244       | 34   |
| CI                                 | 670              | 33   | I                                                                                    | 981       | 33   |                                                  |           |      |
| Compounds 5ª                       |                  |      |                                                                                      |           |      |                                                  |           |      |
| SPh                                | 973              | 35   | Cl                                                                                   | 384       | 36   | $OCOC_6H_4NO_2(p)$                               | 503       | 37   |
| OEz                                | 403              | 36   | ОН                                                                                   | 117       | 37   |                                                  |           |      |
| Compounds 6a                       | :                |      |                                                                                      |           |      |                                                  |           |      |
| OAc                                | 416              | 21   | Вг                                                                                   | 862       | 38   | $OC_6H_4OMe(o)$                                  | 794°      | 43   |
| CI                                 | 651              | 21   | NHAc                                                                                 | 457       | 39   | $OC_6H_4COMe(p)$                                 | 974       | 43   |
| OPh                                | 744              | 21   | OC <sub>6</sub> H₄Me(o)                                                              | 758       | 19   |                                                  |           |      |
| $ONO_2$                            | 625              | 21   | $OC_6H_4Me(m)$                                                                       | 780       | 19   |                                                  |           |      |
| Compounds 7t                       |                  |      |                                                                                      |           |      |                                                  |           |      |
| OPh                                | 556              | 19   | $OC_6H_4Me(o)$                                                                       | 508       | 19   | $OC_6H_4COMe(p)$                                 | 674       | 19   |
| OMe                                | 380              | 40   | $OC_6H_4Me(m)$                                                                       | 559       | 19   | OCH <sub>2</sub> CHCH <sub>2</sub>               | 398       | 29   |
| NHAc                               | 431              | 39   | $OC_6H_4OMe(o)$                                                                      | 605       | 19   | S(CH <sub>2</sub> ) <sub>6</sub> NH <sub>2</sub> | 590       | 28   |
| ОН                                 | 272              | 41   |                                                                                      |           |      | · · ·                                            |           |      |
| Compounds 8°                       | ı                |      |                                                                                      |           |      |                                                  |           |      |
| F                                  | 187              | 17   | Br                                                                                   | 718       | 17   | OMe                                              | 347       | 42   |
| CI                                 | <b>50</b> 4      | 17   | OAc                                                                                  | 283       | 20   | OPh                                              | 476       | 42   |
| Compounds 9                        |                  |      |                                                                                      |           |      |                                                  |           |      |
| ОН                                 | 141              | 41   | OMe                                                                                  | 253       | 41   | F                                                | 115       | 32   |

<sup>&</sup>quot;Sodium p-line, chloroform. "Sodium p-line, water. "Methanol. "Pyridine. There was a calculation error in the original source.

TABLE III CORRELATIONS OF MOLECULAR ROTATIONS WITH BOND REFRACTIONS IN COMPOUNDS 2-9 by use of equation I

| Compounds2 | n <sup>a</sup> | r⁵<br>0.984 | Slope (m)<br>50.8 | Intercept (I) Average deviation <sup>c</sup> (%) |                      |  |
|------------|----------------|-------------|-------------------|--------------------------------------------------|----------------------|--|
|            |                |             |                   | 251                                              | 4                    |  |
| 3          | 21             | 0.947       | 41.5              | 84                                               | 10                   |  |
| 4          | 4              | $0.985^{d}$ | 51.0              | 288                                              | 9                    |  |
| 5          | 5              | 0.903       | 55.3              | 110                                              | 44 (19) <sup>g</sup> |  |
| 6          | 10             | 0.976       | 53.5              | 269                                              | 3                    |  |
| 7          | 9              | 0.967¢      | 36.9              | 187                                              | 6                    |  |
| 8          | 5              | 0.993f      | 67.3              | 68                                               | 5                    |  |
| 9          | 3              | 0.929       | 41.0              | 41                                               | 14                   |  |

<sup>a</sup>Number of points used in the correlations. <sup>b</sup>Correlation coefficient. <sup>c</sup>Average deviation of calculated molecular rotations from the corresponding observed values.  $^{d}X = F$  is excluded in the plot because it was measured in pyridine.  $^{e}X = NHAc$  is excluded; if included, r = 0.937, m = 32.8, I = 232.  $^{f}X = OPh$  is excluded. <sup>a</sup>If X = OH is excluded.

by successive projections<sup>12</sup> of the bond refraction of the  $C-X_1$  bond on the  $Y-C_{Ar}$  bond axis. Using the literature  $R_D$  values<sup>14</sup>, the relevant  $\Sigma R_D$  values shown in Table I were calculated.

Equation 1 was used to correlate the reported molecular rotations (Table II) of compounds 2-9. The results are given in Table III, and the plot for the  $\alpha$ -D-gluco-pyranose tetra-acetates (2) is shown in Fig. 1.

## DISCUSSION

Some deviations from the correlation lines are expected because (a) the assumption of perfect chair conformation used in our calculations of  $\Sigma R_D$  may not be fully correct<sup>10</sup>; (b) there could be some contribution from conformer  $10b^{10}$ ; and (c) the molecular rotations for the same compound reported by different workers often vary significantly. In view of these factors, the plots of  $[M]_D$  against  $\Sigma R_D$  are good (Table III). The average deviation from the correlation line is only 6% for the four series (2, 3, 6, and 7) that have more data for their plots. The larger deviations for series 5 and 9 probably do not give a true picture, because few data are available for the plots. The average m value for the three polyacetate series (2, 6, and 8) is 57 ±6, and that for the three parent series (3, 7, and 9) is 40 ±3. The m values for the tetrabenzoate (4) and the tetrabenzyloxy (5) series are also within the range of the polyacetate series. Therefore, it may be inferred that the effects of varying the  $\alpha$ -substituents at the anomeric carbon atom on the molecular rotations for the  $\alpha$ -D-glucopyranose,  $\alpha$ -D-galactopyranose, and  $\alpha$ -D-xylopyranose series are about the same if the parameter m is interpreted as a measurement of such effects.

It must be emphasised that the above approach is empirical, and no explanation

202 в.-L. РОН

can be offered for the two different ways of calculating the  $\Sigma R_D$  values for X = YZ (Y = N, O, or S) as well as for the substituents on a phenyl ring. However, in both cases, one way involves the strong electron-withdrawers and the other way involves the weak electron-withdrawers and electron donors.

Examination of Dreiding models shows that, for steric reasons, the three conformations 10a-10c are not favoured when  $X = SBu^t$ . The conformation with the tert-butyl group and H-1 eclipsed is favoured sterically. Indeed, the  $\Sigma R_D$  value calculated for this conformation gives a good fit in Fig. 1 (the point for  $\Sigma R_D = 8.40$ ), whereas that calculated for 10a ( $\Sigma R_D = 12.2$ ) deviates considerably from the correlation line.

The case where X = H is unique, in the sense that there are no  $\alpha$  and  $\beta$  anomers. Since, in principle, the plots for the  $\alpha$  and  $\beta$  series have the same intercept, in order for the point X = H to lie on both plots it must occur at  $\Sigma R_D = 0$ . For this reason,  $\Sigma R_D = 0$  is assigned for X = H, instead of using the value of 1.676 for a C-H bond. Our value gives a better fit for X = H in series 3.

The  $\alpha$ -D-mannopyranose and the  $\beta$ -D-glycopyranose series are more complicated to deal with, because of the presence of the two chair conformations<sup>15,16</sup> and the increase in importance of the conformer  $10b^{10}$ . As expected, no linear plots were obtained with the present approach. This problem is being investigated further.

#### ACKNOWLEDGMENTS

The author thanks the Alexander von Humboldt Foundation for a research fellowship, and the Max-Planck-Institut für Experimentelle Medizin for the use of its library facilities.

## REFERENCES

- 1 W. Kuhn, Z. Phys. Chem., Abt. B, 20 (1933) 325-332.
- 2 E. U. CONDON, W. ALTER, AND H. EYRING, J. Chem. Phys., 5 (1937) 753-775.
- 3 J. G. Kirkwood, J. Chem. Phys., 5 (1937) 479-491.
- 4 D. J. CALDWELL AND H. EYRING, The Theory of Optical Activity, Wiley-Interscience, New York, 1972.
- 5 J. H. Brewster, J. Am. Chem. Soc., 81 (1959) 5475-5500.
- 6 J. H. Brewster, Top. Stereochem., 2 (1967) 1-72.
- 7 D. H. WHIFFEN, Chem. Ind. (London), (1956) 964-968.
- 8 C. S. Hudson, J. Am. Chem. Soc., 31 (1909) 66-86.
- 9 W. KAUZMANN, F. B. CLOUGH, AND I. TOBIAS, Tetrahedron, 13 (1961) 57-105.
- 10 R. U. Lemeux and J. C. Martin, Carbohydr. Res., 13 (1970) 139-161.
- 11 D. D. DAVIS AND F. R. JENSEN, J. Org. Chem., 35 (1970) 3410-3416.
- 12 В. L. Рон, Aust. J. Chem., 33 (1980) 1409-1417.
- 13 B. L. Poh, unpublished results.
- 14 A. I. VOGEL, W. T. CRESWELL, G. H. JEFFERY, AND J. LEICESTER, J. Chem. Soc., (1952) 514-549.
- 15 P. L. DURETTE AND D. HORTON, Carbohydr. Res., 18 (1970) 57-80, 403-418.
- 16 P. L. DURETTE AND D. HORTON, Adv. Carbohydr. Chem. Biochem., 26 (1971) 49-125.
- 17 D. H. Brauns, Recl. Trav. Chim. Pays-Bas, 69 (1950) 1175-1195.
- 18 G. N. BOLLENBACK, Methods Carbohydr. Chem., 2 (1963) 326-328.
- 19 W. A. Bonner, M. M. J. Kubitshek, and R. W. Drisko, J. Am. Chem. Soc., 74 (1952) 5082–5086.

- 20 C. S. Hudson, J. Am. Chem. Soc., 46 (1924) 462-477.
- 21 W. KORYTNYK, J. Chem. Soc., (1959) 650-656.
- 22 M. BLANC-MUESSER, J. DEFAYE, AND H. DRIGUEZ, Carbohydr, Res., 67 (1978) 305-328.
- 23 M. SAKATA, M. HAGA, S. TEJIMA, AND M. AKAGI, Chem. Pharm. Bull., 12 (1964) 652-656.
- 24 T. OGAWA AND M. MATSUI, Carbohydr. Res., 54 (1977) c17-c2i.
- 25 E. ZISSIS, A. L. CLINGMAN, AND N. K. RICHTMYER, Carbohydr. Res., 2 (1966) 461-469.
- 26 B. A. Lewis, F. Smith, and A. M. Stephen, Methods Carbohydr, Chem., 2 (1963) 68-77.
- 27 C. S. Hudson, J. Am. Chem. Soc., 38 (1916) 1566-1577.
- 28 D. T. CONNOLLY, S. ROSEMAN, AND Y. C. LEE, Carbohydr, Res., 87 (1980) 227-239.
- 29 R. T. LEE AND Y. C. LEE, Carbohydr. Res., 37 (1974) 193-201.
- 30 H. M. FLOWERS, Carbohydr, Res., 46 (1976) 133-137.
- 31 W. PIGMAN AND R. O. LAFFRE, J. Am. Chem. Soc., 73 (1951) 4994-4995.
- 32 F. MICHEEL AND A. KLEMER, Adv. Carbohydr. Chem., 16 (1961) 85-103.
- 33 L. J. HAYNES AND F. H. NEWTH, Adv. Carbohydr. Chem., 10 (1955) 207-256.
- 34 Y. KONDO, K. YABUUCHI, AND S. HIRANO, Carbohydr. Res., 82 (1980) 398-403.
- 35 R. J. FERRIER AND R. H. FURNEAUX, Carbohydr. Res., 52 (1976) 63-68.
- 36 J. LEROUX AND A. S. PERLIN, Carbohydr, Res., 67 (1978) 163-178.
- 37 C. P. J. GLAUDEMANS AND H. G. FLETCHER, JR., Methods Carbohydr, Chem., 6 (1972) 373-376.
- 38 J. CONCHIE AND G. A. LEVVY, Methods Carbohydr. Chem., 2 (1963) 335-337.
- 39 H. S. ISBELL AND H. L. FRUSH, Methods Carbohydr, Chem., 8 (1980) 255-259.
- 40 J. CONCHIE, G. A. LEVVY, AND C. A. MARSH, Adv. Carbohydr. Chem., 12 (1957) 157-188.
- 41 J. H. Brewster, J. Am. Chem. Soc., 81 (1959) 5475-5483.
- 42 F. P. PHELPS AND C. S. HUDSON, J. Am. Chem. Soc., 50 (1928) 2049-2051.
- 43 K. NISIZAWA, Bull. Chem. Soc. Jpn., 16 (1941) 155-160.